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B. Notation 36

1. Introduction

A particularly interesting entry in the dictionary between gauge theory and gravity links

deconfined or ‘gluon plasma’ phase of Yang Mills theory to black branes and black holes

in gravity. In this paper we study aspects of this connection in the context of specific

examples. In most of this paper we study d = 4, SU(N), N = 4 Yang-Mills at ’t Hooft

coupling g2
YMN = λ, compactified on a Scherk-Schwarz S1 (the remaining 2+1 dimensions

are non compact). The low energy dynamics of this theory is that of a 2 + 1 dimensional

Yang-Mills system that undergoes deconfining phase transition at a finite temperature [1].

At large N and strong ’t Hooft coupling this system admits supergravity dual description;

the low temperature confining phase is dual to a gas of IIB supergravitons on the so called

AdS soliton background [1]

ds2 = L2α′
(

e2u
(
−dt2 + T2π(u) dθ2 + dw2

i

)
+

1

T2π(u)
du2

)
, (1.1)

where i = 1, · · · , 2, θ ∼ θ + 2π, L2 =
√
λ and1

Tx(u) = 1 −
(x
π

eu
)−4

. (1.2)

The high temperature phase of the same system (at temperature T = 1/β) is dual to

the the black brane

ds2 = L2α′
(

e2u
(
−Tβ(u) dt2 + dθ2 + dw2

i

)
+

1

Tβ(u)
du2

)
. (1.3)

The thermodynamics of the high temperature phase are determined in the bulk description

by the usual constitutive equations of black brane thermodynamics [2]

P = −f =
π2N2

8Tc

(
T 4 − Tc

4
)
. (1.4)

For T > Tc this free energy is negative, and so (in the large N limit) is smaller than the

O(1) free energy of the ‘confined’ gas of gravitons. Consequently, the system undergoes a

deconfinement phase transition at temperature Tc.
2

Just as the mean equilibrium properties of the deconfined phase are well described by

the equations of thermodynamics, the statistically averaged near-equilibrium dynamics of

this phase is governed by the equations of fluid dynamics - the relativistic generalisation

1Notice that, at large u, Tx(u) ≃ 1, so (1.1) reduces to AdSd+2 in Poincaré-patch coordinates, with u as

the radial scale coordinate, and with one of the spatial boundary coordinates, θ, compactified on a circle

(the remaining boundary coordinates, wi and t, remain non-compact).
2Tc = 1/2π in the dimensionless units of (1.3)
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of the Navier-Stokes equations. These equations accurately describe the time evolution of

fluid configurations whose space time derivatives are all small in units of the mean free

path, which is of the same order as the mass gap of the theory [3, 2]. The same equations,

augmented by appropriate surface terms, may also be used to study the dynamics of large

lumps of plasma localised in the gauge theory vacuum.

The properties of the surface that separates the plasma from the vacuum, may be

studied in the context of the simplest plasma profile with a surface; a configuration in

which half of space, x < 0, is filled with the plasma. The surface at x = 0 is a domain wall

that separates the plasma from the vacuum. The net force on this domain wall vanishes

(and so the system is in equilibrium) when the plasma that fills x < 0 has vanishing

pressure, i.e. at T = Tc in the large N limit. The bulk gravity dual of this solution was

constructed numerically in [2]; this configuration interpolates between the black brane at

T = Tc for x < 0 and the vacuum at x > 0, via a domain wall. The thickness and surface

tension of this domain wall may be read off from this gravitational solutions, and were

estimated, in [2] at approximately 6 × 1
2πTc

and σ = 2.0 × π2N2Tc
2

2 .

More generally, one would expect a finite lump of plasma that evolves according to

the relativistic Navier-Stokes equations map in the bulk to a ‘black hole’ that evolves

according to the Einstein equations. Provided all length scales in the plasma solution are

small compared to the gauge theory mass gap (which is of the same order as the domain

wall thickness), the dual bulk solution is well approximated by a superposition of patches

of the black brane solution (with temperature varying across the patches) in the bulk and

patches of the domain wall solution described in the previous paragraph. It follows (at least

for stationary solutions) that the 3 dimensional black hole horizon topology (at any given

time) is given by an S1 (physically this is the θ circle) fibred over the two dimensional fluid

configuration at the same time, subject to the condition that the S1 contracts at all fluid

boundaries. Consequently, fluid configurations with different topologies yield bulk dual

black hole configurations with distinct horizon topologies. We will return to this point

below.

This paper is devoted to a detailed study of certain ‘stationary’ configurations of the

plasma fluid; i.e. time independent, steady state solutions to the relativistic Navier-Stokes

equations. The simplest configurations of this sort was studied already in [2]; the plasmaball

is a static, spherically symmetric lump of fluid at constant local pressure P with P = σ/R

where R is the radius of the lump and σ its surface tension. In this paper we study the

more intricate spinning lumps of stationary fluid. These lumps carry angular momentum

in addition to their mass.

It turns out that the relativistic Navier-Stokes equations admit two distinct classes of

solutions of these sort. The first class of solution is a simple deformation of the static plas-

maball; it is given by plasmaballs that spin at a constant angular velocity. The centripetal

force needed to keep the configuration rotating in this solution is provided by a pressure

gradient. The local plasma pressure (and hence local temperature and density) decreases

from the edge (where it is a positive number set by the radius, surface tension and rotation

speed) to the centre. As large enough angular velocity the pressure goes sufficiently nega-

tive in the core of the solution to allow for a second kind of solution of these equations; an

– 3 –
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Ô - no solutions, Â - large ring, B̂ - large ring, small ring and ball, Ĉ - ball.
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Figure 1: (a) Regions where ball and ring solutions exist, (b) their entropy as a function of angular

momentum at fixed energy.

annulus of plasma fluid rotating at constant angular velocity ω. The local plasma pressure

is positive on the outer surface and negative at the inner surface; the numerical value of

the pressure in each case precisely balances the surface tensions at these boundaries.

We now describe the moduli space of spinning plasmaball and plasma ring solutions

in a little more detail. In figure 1(a) we have plotted the energy-angular momentum plane,

which we have divided up into 4 regions. In region Ĉ (low angular momentum at fixed

energy) the only rigidly rotating solution to the equations of fluid dynamics is the rotating

plasmaball. At higher angular momentum (region B̂) in addition to the rotating plasmaball

there exist two new annulus type solutions which we call large and small ring solutions. As

their names makes clear, the solutions are distinguished by their size; the large ring has a

larger outer radius than the small one. On further raising angular momentum (region Â),

the small ring and the ball cease to exist; in this region the large ring is the only solution.

Finally, at still larger angular momentum (region Ô) there exist no solutions.

In figure 1(b) we have plotted the entropy of the three different kinds of solutions as a

function of their angular momentum at a particular fixed energy. At angular momenta for

which all three solutions coexist (region B̂) the entropy of the small ring is always smaller

than the entropy of either the large ring or the black hole. Upon raising the angular

momentum, the solution with dominant entropy switches from being the ball to the large

ring; the first order transition between these solutions occurs at an angular momentum

that lies on a ‘phase transition line’ in the bulk of region B̂. This picture suggests - and we

conjecture - that the ball and the large ring are locally stable with respect to axisymmetric

fluctuations, while the small ring is locally unstable to such fluctuations.3 In subsection 5.5

we perform a ‘turning point’ analysis of our solutions, to find some evidence for this guess.

Let us now turn to the bulk dual interpretation of our solutions. The fluid for the

spinning plasmaball is topologically a disk; consequently the horizon topology for the dual

bulk solution - the S1 fibration over this disk - yields an S3. The bulk dual of the spinning

plasmaball is simply a rotating five dimensional black hole. On the other hand the fluid

3It is possible that the large ring exhibits Plateau-Rayleigh type instabilities that break rotational

invariance; such modes would map to Gregory-Laflamme type instabilities of the bulk solution (see also [4]).

We thank T. Wiseman for suggesting this possibility.
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Figure 2: Spinning ball and ring solutions.

configuration of the plasmaring has the topology of S1× interval; the S1 fibration over this

configuration yields S1 × S2; i.e. a five dimensional black ring! Notice that in addition to

the isometry along the S1, these ring solutions all have a isometry on the S2 corresponding

to translations along the Scherk-Schwarz circle. This additional isometry, that does not

appear to be required by symmetry considerations, appears to be a feature of all known

black ring solutions in flat space as well.

Using the gauge theory / gravity duality, the quantitative versions of the figure 1 give

precise quantitative predictions for the existence, thermodynamic properties and stabil-

ity of sufficiently big black holes and black rings in Scherk-Schwarz compactified AdS5

spaces. While these gravitational solutions have not yet been constructed, their analogues

in flat 5 dimensional space are known, and have been well studied. The general qualitative

features (and some quantitative features) of figure 1 are in remarkably good agreement

with the analogous plots for black holes and black rings in flat five dimensional space (see

subsection 5.4 for a detailed discussion).

The constructions we have described above admit simple generalisations to plasma

solutions dual to black holes and black rings in Scherk-Schwarz compactified AdS6 space.4

As the qualitative nature of the moduli space of black hole like solutions in six dimensional

gravity is poorly understood, this study is of interest. The boundary duals of these objects,

in the long wavelength limit, are stationary solutions to the equations of fluid dynamics

of a 4 dimensional field theory. In section 6 we construct such solutions. It turns out

that these solutions occur in two qualitatively distinct classes. The simplest solutions are

simply spinning balls of plasma; the fact that these balls spin causes them to flatten out

near the ‘poles’. As these balls are spun up, their profile begins to ‘dip’ near the poles (see

figure 2). As these balls are further spun up, they pinch off at the centre and turn into

doughnut shaped rings (see figure 2).

As in the three dimensional case, the horizon topology of the black objects dual to

the rotating plasmaballs and plasmarings described above, is obtained by fibering the fluid

configuration with an S1 that shrinks to zero at the fluid edges. This procedure yields a

horizon topology S4 for the dual to the rotating plasmaball, and topology S3 × S1 for the

4Note that the spinning plasmaring has no analogue in 1+1 dimensional fluid dynamics, for the excellent

reason that there is no spin. This tallies with the fact that there are no black rings in four dimensions (at

least in flat space).

– 5 –



J
H
E
P
0
5
(
2
0
0
8
)
0
0
1

dual to the plasmaring. As plasmaball and plasmaring configurations appear to exhaust

the set of stationary fluid solutions to the equations of fluid dynamics, it follows that

arbitrarily large stationary black objects in Scherk-Schwarz compactified AdS6 all have

one of these two horizon topologies. S2 × S2 is an example of another topology one could

have imagined for black objects in this space; these would have been dual to hollow shells

of rotating fluid; however, there are no such stationary solutions to the equations of fluid

dynamics.

The analysis of four dimensional fluid configurations, described above, demonstrates

the power of the fluid dynamical method. In simple contexts, the Navier-Stokes equations

are much easier to solve than the full set of Einstein’s equations, and rather easily reveal

interesting and nontrivial information. It would be interesting to extend our analysis of

fluid dynamical models in various directions to obtain information about the moduli space

and stability of classes of black solutions in AdS spaces. An obvious extension would be

to move to higher dimensions. As a first step in this direction, we have obtained and

partially solved the fluid flow equations in 5 dimensional spaces. A complete analysis of

these equations would yield the spectrum of black holes in Scherk-Schwarz compactified

AdS7 spaces, in terms of the fluid dynamics of the deconfined phase of the M5 brane theory

on a Scherk-Schwarz circle.

Finally, we should point out that there has been a long history within the General

Relativity literature of treating black hole horizons as surfaces associated with fluids. In

one of the most recent discussion within this framework, the authors of [5] have modelled

spinning black holes in d+1 dimensional (flat space) gravity by d+1 dimensional lumps of

incompressible fluid; here the fluid surface represents the black hole horizon. Within this

framework the 4+1 dimensional black ring, for instance, is modelled by a 4+1 dimensional

stationary fluid lump of topology B3 × S1 [6]. This description is rather different from

the AdS/CFT induced description of black rings in Scherk Schwarz compactified AdS5

as a 2+1 dimensional annulus of fluid. It would be interesting to better understand the

interconnections between these approaches.

2. Fluid mechanics and thermodynamics

In this paper we study aspects of the dynamics of the deconfined plasma described in

the previous section. A full accounting for the dynamics of the ‘gluon plasma’ is a very

complicated problem. However, when the thermodynamic potentials and velocities vary

over length scales large compared to the quasiparticle (‘gluon’) mean free path admit

an effective description in terms of the equations of fluid dynamics. The variables in

this description are the local values of the plasma or fluid velocity uµ(x) and the plasma

density ρ(x) (the equation of state, as discussed in subsection 2.4, may be used to trade the

density for the pressure or the temperature). The equations of fluid dynamics are simply

a statement of the conservation of the stress tensor

∇µT
µν = ∂µT

µν + Γµ
µλT

λν + Γν
µλT

µλ = 0 . (2.1)

– 6 –
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All input of the dynamical nature of the fluid that undergoes this flow appears in the

specification of the stress tensor in terms of the velocity and density of the fluid, and from

the thermodynamic equation of state (which determines the pressure and temperature as

a function of density). In the rest of this brief subsection we describe the functional form

of the fluid dynamical stress tensor for our plasma fluid in detail.

The stress tensor can be split into three parts:

T µν = T µν
perfect + T µν

dissipative + T µν
surface.

The first part, T µν
perfect, is the stress tensor for a perfect fluid with no dissipative forces. It

is a function only of fluid velocity and thermodynamic quantities in the rest frame, and

not of their space time derivatives.

The second part, T µν
dissipative, receives contributions from viscosity and heat flow. In

the long wavelength limit this piece is linear in the first derivatives of the velocity and

temperature.

The third part, T µν
surface, represents surface contributions to the stress tensor, and re-

quires more explanation. Any fluid configuration with a surface has large variations in (for

instance) the fluid density over the scale of the mean free path, in directions normal to the

surface (see for instance [2]). As a consequence it is impermissable to use the Navier-Stokes

equations for the fluid in the neighbourhood of the surface. When the deviations of the

surface from a straight line are small over length scale of the mean free path, however, all

effects of the surface may approximately be captured by a delta function localised ‘surface

tension’ contribution, T µν
surface, to the stress tensor. In the long wavelength approximation,

this term depends only on the gradients of the surface and not its curvature.

2.1 Perfect fluid stress tensor

The most general ultralocal stress tensor one can build out of the fluid velocity and ther-

modynamic quantities that reduces to what is expected for a fluid at rest is [7, ch.22]

T µν
perfect = (ρ+ P )uµuν + Pgµν . (2.2)

2.2 Dissipative part

Realistic fluids have a dissipative component to their stress tensor in addition to the perfect

fluid piece. In the long wavelength limit, this stress tensor is a function of the accelera-

tion, expansion, projection, and shear tensors (see e.g. [7, Exercise 22.6-7] and references

therein),

aµ = uν∇νu
µ,

θ = ∇µu
µ,

Pµν = gµν + uνuµ,

σµν =
1

2

(
Pµλ∇λu

ν + P νλ∇λu
µ
)
− 1

d− 1
θPµν .

(2.3)

In terms of these quantities and the heat flow vector qµ (see immediately below)

T µν
dissipative = −ζθPµν − 2ησµν + qµuν + uµqν , (2.4)

– 7 –
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where ζ is the bulk viscosity, η is the shear viscosity. The heat flux vector,

qµ = −κPµν(∂νT + aνT ) . (2.5)

is the relativistic generalisation of ~q = −κ~∇T (here κ is the thermal conductivity); the

extra term in (2.5) is related to the inertia of flowing heat.

2.3 Surface contribution

We will use a simple model of surface tension where the energy stored in the surface and

the force per unit length are both given by σ, which we take to be the surface tension

at the critical temperature computed in [2]. We will ignore any dependance σ could have

on the fluid temperature. This approximation is valid when the fluid temperature at the

surface does not deviate substantially from Tc.

Consider a localised lump of fluid whose surface in space is given by the equation

f(x) = 0. The surface contribution to the stress tensor will be proportional to σδ(f). In

the long wavelength limit it will only depend on the first derivatives of f . The most general

stress tensor we can build is

T µν
surface = [α∂µf ∂νf + β uµuν + γ (uµ∂νf + ∂µfuν) + δ gµν ] σδ(f) .

As u2 = −1 and uµ∂µf = 0 (the surface moves with the fluid), the only invariant quantity

that α, β, γ, δ can depend on is (∂µf ∂µf). We can fix this dependence by demanding

invariance under reparameterisations of the surface5 (e.g. f(x) → g(x)f(x), so that ∂f →
g∂f + f∂g = g∂f at the surface). Defining fµ =

∂µf√
∂f·∂f

:

T µν
surface = [Afµf ν +Buµuν + C (uµf ν + fµuν) +Dgµν ]σ

√
∂f ·∂fδ(f) .

We can fix A,B,C,D by looking at a fluid at rest, uµ = (1, 0, 0, . . .), with a surface f(x) = x

T µν
surface =



B −D C 0

C A+D 0

0 0 D


σδ(x) =




1 0 0

0 0 0

0 0 −1


σδ(x).

This gives

T µν
surface = σ [fµf ν − gµν ]

√
∂f ·∂fδ(f) . (2.6)

2.4 Equations of state

To solve the equations of fluid mechanics, one also needs expressions for the various coeffi-

cients that appear in the stress tensor above in terms of the density. For our purposes, we

only need to know the thermodynamic properties of the fluid, which could be determined

from the static black brane solution (1.3). In this subsection we discuss the free energy,

temperature etc. of the plasma at rest. This is different from the free energy, temperature

etc. of the plasmaball/plasmaring.

5However, we should choose a parametrisation such that ∂µf is well behaved at the surface, e.g. f = x,

but not f = x2 or f =
√
x.

– 8 –
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For a conformal theory in d dimensions with no conserved charges, dimensional analysis

and extensivity determine

F = −αV T d, (2.7)

with α an arbitrary constant. In our situation, the plasma is dual to the same black brane,

so it doesn’t know about any capping off in the IR except that the energy is measured with

respect to a different zero. Before reducing on the Scherk-Schwarz circle, it behaves like

a conformal theory in d + 1 dimensions plus a vacuum energy density. After dimensional

reduction6, we have

F = V
(
ρ0 − αT d+1

)
. (2.8)

This gives

P = −
(
∂F
∂V

)

T
= αT d+1 − ρ0 ,

S = −
(
∂F
∂T

)

V

= (d+ 1)αV T d ,

E = F + T S = V
(
ρ0 + dαT d+1

)
.

(2.9)

In terms of intensive quantities, we have

P =
ρ− (d+ 1)ρ0

d
, P + ρ =

(
d+ 1

d

)
(ρ− ρ0) ,

s = (d+ 1)α1/(d+1)

(
ρ− ρ0

d

)d/(d+1)

, T =

(
ρ− ρ0

dα

)1/(d+1)

,

(2.10)

or, in three dimensions

P =
ρ− 4ρ0

3
, P + ρ =

4

3
(ρ− ρ0) ,

s =
4α1/4

33/4
(ρ− ρ0)

3/4 , T =

(
ρ− ρ0

3α

)1/4

.

(2.11)

Note that the critical density and temperature are those for which the pressure is zero

ρc = (d+ 1)ρ0 , Tc =
(ρ0

α

)1/(d+1)
. (2.12)

For the black-brane equation of state (1.4)

ρ0 =
π2N2Tc

3

8
, α =

π2N2

8Tc
. (2.13)

However, the values of these constants will not be important below.

6Strictly speaking, it is not a dimensional reduction as we will have plasma temperature of the same

order as the Kaluza-Klein scale. Rather, we are restricting attention to classical solutions that do not vary

in this compact dimension.
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3. Rigidly rotating configurations

In this section, we study stationary, axially symmetric rotating fluid configurations, whose

equation of state is presented in various forms in subsection 2.4. We choose the axis

of rotation as our origin in polar coordinates; in these coordinates the fluid density is a

function only of the radial coordinate r, and the (t, r, φ) components of the velocity are given

by uµ = γ(1, 0, ω) with γ =
(
1 − ω2r2

)−1/2
. We will find two distinct kinds of solutions;

rotating plasmaballs with the topology of a two dimensional disk, and plasmarings with

the topology of a two dimensional annulus. The configurations we find are exact solutions

to the equations of relativistic fluid dynamics; in subsection 5.2 we will demonstrate that

these equations accurately represent plasma dynamics for large enough plasmaballs and

plasmarings.

3.1 Equations of motion

Our fluid propagates in flat 2+1 dimensional space. In polar coordinates

ds2 = −dt2 + dr2 + r2dφ2 . (3.1)

This gives the following non-zero Christoffel symbols:

Γr
φφ = −r Γφ

rφ = Γφ
φr =

1

r
. (3.2)

For the stationary, axially symmetric configurations under consideration, ∂tT
µν =

∂φT
µν = 0. Using (3.2), (2.1) becomes

0 = ∇µT
µt = ∂rT

rt +
1

r
T rt, (3.3)

0 = ∇µT
µr = ∂rT

rr +
1

r
T rr − rT φφ, (3.4)

0 = ∇µT
µφ = ∂rT

rφ +
3

r
T rφ. (3.5)

The boundaries are fn = r − rn, with n labelling the different boundaries (outer for

the disk, outer and inner for the annulus). The ‘perfect fluid part’ of the stress tensor is

T µν
perfect =



γ2(ρ+ ω2r2P ) 0 γ2ω(ρ+ P )

0 P 0

γ2ω(ρ+ P ) 0 γ2

r2 (ω2r2ρ+ P )


 (3.6)

and the surface stress tensor

T µν
surface = σ

∑

n

δ(r − rn)




1 0 0

0 0 0

0 0 − 1
r2


 (3.7)

For the dissipative part of the stress tensor, we find θ = σµν = 0 and

∂νT + aνT =

(
0, γ

d

dr

[T
γ

]
, 0

)
, (3.8)

– 10 –
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so that

T µν
dissipative = −κγ2 d

dr

[T
γ

]



0 1 0

1 0 ω

0 ω 0


 (3.9)

We will now write the equations of motion ∇µT
µν = 0 temporarily ignoring the con-

tribution from this heat flow, T µν
dissipative; it will turn out (we see this immediately below)

that T µν
dissipative actually vanishes on our solutions, justifying this procedure.

The only non-trivial equation of motion, (3.4), can be written as

dP

dr
=

ω2r

1 − ω2r2
(ρ+ P ) −

∑

n

σ

r
δ(r − rn) . (3.10)

For these fluids (with no chemical potentials for any conserved charges), P = −f is a

function only of T , so P + ρ = sT and dP
dT = s. So, away from the boundaries, (3.10)

becomes

s
dT
dr

= sT d ln γ

dr

=⇒ d

dr

[T
γ

]
= 0

(3.11)

It follows that T µν
dissipative vanishes for rigid rotation, justifying our neglect of heat flow.

Our discussion has not assumed a specific form of the equation of state. Using this

particular equation of state of our plasma (2.11), we can rewrite (3.11) in the fluid interior

as

(ρ(r) − ρ0)
(
1 − ω2r2

)2
= constant. (3.12)

Integrating (3.10) across a surface gives

P> − P< = −σ
r
. (3.13)

where P> and P< are the pressures at infinitesimally greater and smaller radii than the

location of the surface.

3.2 Spinning ball

Let us first study a fluid configuration with a single outer surface at r = ro with P> = 0.

Using the equation of state (2.11), the boundary condition (3.13) can be written as

ρ(ro) = 4ρ0 +
3σ

ro
. (3.14)

If we define dimensionless variables

ω̃ =
σω

ρ0
, r̃ =

ρ0r

σ
, v = ωr = ω̃r̃ , (3.15)

then (3.12) can be written as
(
ρ(v) − ρ0

3ρ0

)(
1 − v2

)2
=

(
1 +

ω̃

vo

)(
1 − v2

o

)2 ≡ g+(vo). (3.16)

– 11 –
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Figure 3: Graph of g±(v) showing possible values of vo,i

Note that the range of v is [0, 1] and ρ(v) − ρ0 is always positive for this solution, as

is required for the last equation of (2.11) to make sense.

We can also compute the local plasma temperature using (2.11)

T = γ

(
ρ0g+(vo)

α

)1/4

. (3.17)

3.3 Spinning ring

We now turn to solutions that have an inner surface well an outer surface. In addition to

the boundary condition at the outer radius (3.14) we now have

ρ(ri) = 4ρ0 −
3σ

ri
. (3.18)

So the full solution is
(
ρ(v) − ρ0

3ρ0

)(
1 − v2

)2
=

(
1 +

ω̃

vo

)(
1 − v2

o

)2 ≡ g+(vo)

=

(
1 − ω̃

vi

)(
1 − v2

i

)2 ≡ g−(vi).

(3.19)

Note that ρ(v) − ρ0 ≥ 0 provided that vi ≥ ω̃.

Again, we can compute the local plasma temperature using (2.11)

T = γ

(
ρ0g+(vo)

α

)1/4

= γ

(
ρ0g−(vi)

α

)1/4

. (3.20)

The two functions, g±(v) are schematically plotted in figure 3 for some value of ω̃,

where we have labelled special velocities v∗i and v∗o . As vi < 1, it is necessary that ω̃ < 1.

We can see that there are no solutions to g+(vo) = g−(vi) for vo < v∗o and two solutions

for vo > v∗o . One of these has vi < v∗i (the thick ring) and one has vi > v∗i (the thin ring).

The distinction between ‘thin’ and ‘thick’ rings will not prove physically important. In

subsection 5.1 we will find it physically useful to distinguish between distinct ring solutions

(we will call these large and small rings) at the same values of conserved charges (energy

and angular momentum), rather than the parameters vo and ω̃.

– 12 –
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4. Thermodynamic potentials

In this section, we compute the thermodynamic potentials (energy, angular momentum,

entropy, etc.) for the spinning plasmaball and plasmarings themselves, rather than their

constituent plasma. This includes contributions from the kinetic energy of the plasma as

well as its internal energy.

The constitutive relations we find are predictions for, e.g., entropy as a function of

mass and angular momentum of the dual gravity solutions.

4.1 Densities

In this subsection we list formulae for energy density, angular momentum density and en-

tropy density. In the next subsection we will integrate these expressions to find explicit

formulae for the energy, angular momentum and entropy of spinning plasmaballs and plas-

marings.

The energy density is given by

T tt = γ2
(
ρ+ ω2r2P

)
+
∑

n

σ δ(r − rn)

= ρ0

[
1 + g+(vo)

3 + v2

(1 − v2)3
+
∑

n

2ω̃v δ(v2 − v2
n)

]
.

(4.1)

The angular momentum density is given by

r2T tφ = γ2ωr2(ρ+ P ) = 4σ
g+(vo)

ω̃

v2

(1 − v2)3
. (4.2)

The entropy density is given by

γs =
4α1/4

33/4

(ρ− ρ0)
3/4

√
1 − v2

= 4(αρ3
0)

1/4 g+(vo)
3/4

(1 − v2)2
(4.3)

4.2 Integrals

We can define some dimensionless variables

Ẽ =
ρ0E

πσ2
, L̃ =

ρ2
0L

πσ3
, S̃ =

ρ
5/4
0 S

πα1/4σ2
, T̃ = T

(
α

ρ0

)1/4

, Ω̃ =
σΩ

ρ0
. (4.4)

The last of these ensure that T̃ =
(

∂ eE
∂ eS

)
eL

and Ω̃ =
(

∂ eE
∂ eL

)
eS

follow from T =
(

∂E
∂S

)
L

and

Ω =
(

∂E
∂L

)
S

4.2.1 Spinning ball

Energy

Ẽ =
4v2

o − v4
o + 5ω̃vo − ω̃v3

o

ω̃2
(4.5)

Angular momentum

L̃ =
2v4

o + 2ω̃v3
o

ω̃3
(4.6)
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Entropy

S̃ =
4v2

o

ω̃2

√
1 − v2

o

(
1 +

ω̃

vo

)3/4

(4.7)

4.2.2 Spinning ring

Energy

Ẽ =
4(v2

o − v2
i ) − (v4

o − v4
i ) + 5ω̃(vo + vi) − ω̃(v3

o + v3
i )

ω̃2
(4.8)

Angular momentum

L̃ =
2(v4

o − v4
i ) + 2ω̃(v3

o + v3
i )

ω̃3
(4.9)

Entropy

S̃ =
4

ω̃2

[
√

1 − v2
o

(
1 +

ω̃

vo

)3/4

−
√

1 − v2
i

(
1 − ω̃

vi

)3/4
]

(4.10)

4.3 Temperature and angular velocity

In this subsection we determine the temperature and angular velocity of spinning plasma-

balls and plasmarings using

T̃ =

(
∂Ẽ

∂S̃

)

eL

, Ω̃ =

(
∂Ẽ

∂L̃

)

eS

. (4.11)

Note that the temperature defined above is different from the local plasma temperature,

T (which varies across our solutions), in (2.9), (2.11); the angular velocity defined above

will turn out to be ω on all our solutions, although it is apparently a priori different.

It may be verified that the temperature and angular velocity of plasmaballs is given

by

T̃ = [g+(vo)]
1/4, Ω̃ = ω̃ . (4.12)

The corresponding expressions for the rings are identical

T̃ = [g+(vo)]
1/4 = [g−(vi)]

1/4, Ω̃ = ω̃ . (4.13)

Thus, local temperatures, Tc, and angular velocities, ω, for both the ball and the ring,

are given simply in terms of T and Ω

T =
T√

1 − v2
, ω = Ω .

– 14 –
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Figure 4: Scatter plots of energy and angular momentum of (a) spinning balls and (b) rings.

O - no solutions, A - 1 ring, B - 2 rings, C - 1 ball.

(a)

C
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O

(b)

A

B

O

eE

eL

O

Figure 5: Regions where (a) ball and (b) ring solutions exist.

5. Solutions at fixed energy and angular momentum

5.1 Existence

In figure 4, we display scatter plots for the energy and angular momentum of ball and

ring solutions over the full range of solution parameters.7 The various regions of existence

of the plasmaball, thin plasmaring and thick plasmaring in the E − L plane are drawn

schematically in figure 5.

The ball solution exists over a region C in the E − L plane. At the boundary of the

region C the ball solution vo attains its maximum value of unity. Using (4.5), (4.6) we find

an analytic expression for the boundary of C:

L̃ =
2

27

[
(3Ẽ + 4)3/2 − 9Ẽ − 8

]
∼ 2Ẽ3/2

33/2
for large Ẽ . (5.1)

From (4.12), we see that balls on this boundary saturate the extremality bound (i.e. have

zero temperature).

Like the balls, rings of a fixed energy have a maximum value of angular momentum.

Rings at the edge of this bound (the boundary between O and A in figure 5b) have vo =

vi = 1 and so are extremal (see (4.13)) and of zero width. Using (4.8), (4.9) the O-A

7In order to generate these plots for the ball, a range of vales of (vo, eω) were chosen and (E,L) were com-

puted using (4.5), (4.6). For the ring, a range of vales of (vi, eω) were chosen, vo was computed using (3.19),

and (E,L) were computed using (4.8), (4.9).
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Figure 6: Outer radius of large and small rings as a function of angular momentum, L̃, at fixed

energy, Ẽ = 40.

boundary is given by

L̃ =
Ẽ2

16
, (5.2)

(this expression is valid only for Ẽ > 8, L̃ > 2; at lower energies ω̃ exceeds unity).

As we lower angular momentum of the solution, this ring moves away from extremality

and increases in width. At a particular angular momentum (the boundary between region

A and region B) a new ring solution comes into existence. The corresponding solution has

vo = 1, vi = ω̃ and so is extremal (see (4.13). Using (4.8), (4.9), the analytic expression for

the A-B boundary is given by

L̃ =
2

27

[
(3Ẽ + 1)3/2 − 9Ẽ + 1

]
∼ 2Ẽ3/2

33/2
for large Ẽ , (5.3)

(for Ẽ > 8, L̃ > 2 as above). In the high energy limit Ẽ ≫ 1 the ratio of angular

momentum for the new extremal rings (at the A-B boundary) and extremal plasmaball

tends to unity, (even though the the difference between angular momenta does not go to

zero). Consequently the leading high energy behaviour of (5.3) and (5.1) is the same in

this limit, as is also clear from figure 7. We emphasise that, for our solutions, the extremal

ball and extremal thick ring are not quite identical (as is the case for black holes and small

black rings [8] in flat space) as the inner radius of our extremal thick rings does not vanish.

However, the inner radius of the extremal thick ring is always (for all values of energy) of

the same order as the thickness of the domain wall. As the fluid dynamics approximations

fail precisely under these conditions, it could well be that the new extremal plasmaring

and extremal plasmaball are actually identical configurations.

As we further lower angular momentum, the new ring solution moves away from ex-

tremality; this new solution always has a smaller outer radius than the ‘original’ ring so-

lution (the solutions that also exists in region A), as shown in figure 6. As a consequence,

we refer to these two ring solutions as small and large respectively.

Further lowering angular momentum, we hit the boundary between regions B and O

where the two ring solutions merge into each other. At still lower angular momentum, we

have no ring solutions. The C-O boundary may thus be obtained by minimising L̃ at fixed
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Figure 7: Regions where ball and ring solutions exist.

Ẽ. If one uses (3.19) to eliminate ω̃, this amounts to

(
∂Ẽ

∂vo

)

vi

(
∂L̃

∂vi

)

vo

−
(
∂Ẽ

∂vi

)

vo

(
∂L̃

∂vo

)

vi

= 0.

The existence of plasmaball and plasmaring solutions in the E-L plane may thus be

summarised as in figure 7.

5.2 Validity

As we have described above, plasmaballs and plasmarings are exact solutions to the rel-

ativistic Navier-Stokes equations (supplemented by sharp surface boundary conditions).

However these equations of fluid dynamics accurately capture the dynamics of the fluid

plasma only under certain conditions. In our discussion we have assigned a well defined

pressure and temperature to the fluid at each point in space. Clearly this procedure is

valid only when the variation of these thermodynamic quantities is small over the length

scale of the mean free path of the quasiparticles (roughly gluons) of our system. The mean

free path is of the same order as the mass gap of the theory, which in turn is similar to the

deconfinement temperature.8

Second, we have treated the surface of the plasma as sharp; in reality this surface has

a thickness of order Tc
−1. Consequently, our treatment of the surface is valid only when its

deviation from a straight line occurs on scales large compared to Tc
−1 (higher derivative

contributions to the surface stress tensor, which we have ignored in our treatment, would

become important if this were not the case); further we must also require that only a small

fraction of the fluid should reside in surfaces.

Thirdly, we have ignored the fact that the surface tension is a function of the fluid

temperature at the surface, and simply set σ = σ(Tc). This is valid provided that T /Tc ≈ 1

at all surfaces.

8It was argued in [2] that the mean free path does not scale with N . According to quasiparticle kinetic

theory, the mean free path is approximately the ratio of the shear viscosity and the energy density. The

computations reviewed in [3] show that this quantity is of order 1/Tc in the limit of the ’t Hooft coupling

λ → ∞.
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Finally, the fluid evolution equations, by their very nature, track mean velocities and

energy densities, ignoring fluctuations. In our context this approximation is justified by

large N ; fluctuations are suppressed by powers of 1/N2, dual to the suppression of quantum

metric fluctuations in the bulk.

Recall that

ρ0 ∼ N2Tc
3, σ ∼ N2Tc

2, so
1

Tc
∼ σ

ρ0

(for the domain wall solution of [2], σ
ρ0

= 2.0 × 4
Tc

and the thickness is 6 × 1
2πTc

).

As an estimate of the scale over which thermodynamic quantities vary, we compute

the fractional change in the fluid temperature over the distance of a mean free path. As

the temperature is proportional to γ, we should look at

1

Tc

d

dr
ln γ ∼ σ

ρ0

ω2r

1 − ω2r2
=

ω̃v

1 − v2
.

As this takes its maximum value at the outer surface, the condition for the validity of the

equations of fluid dynamics may be estimated to be

∆u ≡ ω̃vo
1 − v2

o

≪ 1 . (5.4)

Our treatment of the surface as a zero-thickness object is valid if

{ro, ri, ro − ri} ≫ 1

Tc
∼ σ

ρ0

(for the ring, the ro inequality in the equation above follows automatically from the either

of the other two inequalities). This condition can be rewritten in terms of our dimensionless

variables as

vo ≫ ω̃ or r̃o ≫ 1 for the ball,

{vi, vo − vi} ≫ ω̃ or {r̃i, r̃o − r̃i} ≫ 1 for the ring.
(5.5)

In figure 8, we have plotted ln(1/∆u), ln(r̃i), ln(r̃o − r̃i) and ln(r̃o) for the thin ring,

thick ring and ball. From the figure we observe that these quantities are large (and so the

fluid dynamics approximations of this paper are accurate) when our rings and balls have

large energy and we stay away from the extremality bounds.

Finally, validity of our approximation of the surface tension as a constant (indepen-

dent of temperature) requires that the maximum and minimum values of ln(T /Tc) (which

occur at the outer and inner surfaces respectively) are both small. We have plotted these

quantities in figure 9. It is clear from these figures that this condition is fulfilled for large

energy and angular momentum provided that we are not near extremality.

5.3 Global stability and phase diagram

Recall that (see figure 7) at fixed values of energy and angular momentum, we have either

0, 1 or 3 plasmaball / plasmaring solutions. At those values of charges for which multiple

solutions exist, it is natural to inquire which of these solutions is entropically favoured.
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Figure 9: Plots of (a) ln(Tmin/Tc) (b) ln(Tmax/Tc) for i) balls, ii) small rings, iii) large rings.

In figure 10(a) we have plotted the entropy of plasma ball and plasmaring solutions as a

function of angular momentum at fixed energy.
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Figure 10: (a) Entropy, S̃, as a function of angular momentum, L̃ for fixed energy, Ẽ = 40. (b)

Phase boundary with existence boundaries.

Note that, when it exists, the small ring always carries lower entropy than both the

big ring and the plasmaball. At low enough angular momentum the plasmaball is the only

solution. This solution continues to be entropically dominant (upon raising the angular

momentum) over an interval, even after the new ring solutions are nucleated. At a critical

angular momentum, however, the entropy of the large ring equals and then exceeds the

entropy of the plasmaball (all three ring solutions continue to exist in a neighbourhood

about this point). The large ring is the entropically dominant solution at all larger angular

momenta.

The phase boundary can be seen in figure 10(b).

5.4 Comparison with black rings in flat 5D space

As we have explained in the introduction, the plasmaball and plasmaring solutions of this

paper are dual to black holes and black rings in the background (1.1). Unfortunately the

corresponding gravitational solutions have not yet been constructed; however exact Black

ring solutions to the vacuum Einstein equations in 5 dimensions, were obtained in [8] (see [9]

for a review). These solutions were further studied in [10]. In this subsection we compare

the properties these black rings and black holes with our plasmaballs and plasmarings, and

find broad qualitative agreement between the two.9

In figure 11 we have presented a schematic plot for the existence of black hole and

black ring solutions in 5 dimensional flat space. This figure looks fairly similar to fig-

ures 7), (10(b). The major qualitative difference is the absence of the analogue of the

region O (see figure 7) in figure 11. Thus unlike thin black rings in flat 5 dimensional

space, plasmarings (and so black rings in Scherk-Schwarz AdS5) have an upper bound to

their angular momentum at fixed energy.10

9While we expect the properties of plasmaballs and plasmarings to match quantitatively with those of

black holes and black rings in the background (1.1), we could not hope to find better than qualitative

agreement with the properties of the same objects in flat space.
10This upper bound was expected for black rings in AdS. The negative cosmological constant has a similar
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It is interesting to pursue the comparison between these solutions in more detail. The

gravitational analogue of figure 10 (presented as [8, figure3]) looks fairly similar to our

figure. The main qualitative differences are: unlike for plasmarings, the entropy of the

large flat space black ring doesn’t go to zero at a finite angular momentum (it asymptotes

to zero at infinity) and the entropy of the small flat space black ring and black hole go

to zero at exactly the same point instead of the slightly different values that we see. We

expect that first of these differences reflects a physical difference between black rings in

flat space and Scherk-Schwarz compactified AdS5, the second difference is an artefact of

the breakdown of the fluid dynamics approximation for extremal small rings (whose inner

radius is always of order the mean free path).

In even greater detail, we could quantitatively compare the boundaries between regions

O, A, B and C (see figure 5). These curves, as well as the phase boundary, may be

parameterised by L = xEy at large energies.

For black holes and black rings in flat space yAB = yOC = yBO = yphase = 3
2 . For our

plasmaballs and plasmarings, as one can see in figure 12 (or from (5.1), (5.3) for the first

three), for large energy, we get yOA = 2, yAB = yOC = 3
2 , yBO = 1.25 and yphase = 1.25

(see table 1).

It is meaningless to compare the x’s directly, as they are dimensionful quantities.

However, when two y’s have the same value, the ratio of the corresponding x’s is dimen-

sionless and may be compared. For black rings xAB =
√

32G/27π, xBO =
√
G/π and

xphase =
√

256G/243π, so xAB/xOC = 1, xOC/xBO =
√

32/27 and xBO/xphase = 9
√

3/16.

For plasmaballs and plasmarings, if we used the dimensionless quantities (4.4), we find

xOA = 1
16 , xAB = xOC = 2/33/2, xBO ≈ 0.60 and xphase ≈ 0.67. Therefore xAB/xOC = 1

and xBO/xphase ≈ 0.91.

This is summarised in table 1. Note that the extremality boundaries, OA, AB and

OC, occur precisely where at least one of the approximations discussed in subsection 5.2

breaks down. Therefore, nothing quantitative about these boundaries should be trusted.

effect to the dipole charge of [11]. We thank R. Emparan for explaining this to us.
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Figure 12: (a) log-log plots of the boundaries, (b) gradients of log-log plots, (c) L̃/Ẽy → x.

Quantity Black rings Plasmarings

yOA N/A 2

yAB 3/2 3/2

yOC 3/2 3/2

yBO 3/2 1.25

yphase 3/2 1.25

xAB/xOC 1 1

xOC/xBO

√
32/27 N/A

xBO/xphase 9
√

3/16 ≈ 0.97 0.91

Table 1: Comparison of scalings of boundaries for black rings and plasmarings.

5.5 Turning point stability

We have seen in subsection 5.3 that the spinning plasma solution of maximal entropy

is the plasmaball (at low angular momentum) or the large plasmaring (at high angular

momentum). The ‘phase transition’ between these two solutions may be thought of as

being of first order (in the sense that the two competing solutions are different at the

phase transition point). The small plasmaring is entropically subdominant to both the

plasmaball and the large plasmaring whenever it exists.

This situation appears to lend itself to a description in terms of a Landau diagram,

with the entropy given by a function of the (unidentified) order parameter that has two
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maxima (the plasmaball and the large plasmaring) separated by a single minimum (the

small plasmaring). This analogy suggests - and we conjecture that - the small plasmaring is

always dynamically unstable, while the plasmaball and large plasmarings are dynamically

stable with respect to axisymmetric fluctuations.

An honest verification of our conjecture would require a study of the spectrum of linear

fluctuations about our plasmaball and plasmaring solutions, an analysis that we have not

carried out. In this subsection, however, we present some evidence for our conjecture, using

the ‘turning point’ stability analysis of [12] (see [13] for discussion and references).

Consider a (not necessarily stable) equilibrium configuration that changes from being

stable to unstable under continuous variation. The configurations we apply these considera-

tions to are plasmarings; according to our conjecture these rings are stable to axisymmetric

fluctuations when large but become unstable to the same modes when small. At the bound-

ary of stability, the matrix of second derivatives of the entropy with respect to off shell

variations (or ‘order parameters’) of the configuration under question develops a zero eigen-

value. In the neighbourhood of this special point, a small change in the thermodynamic

potentials of the solution give rise to a large change in the order parameter along the zero

eigenvalue direction (as such a change is entropically inexpensive). As argued in [14 – 17],

this results in a divergent contribution to the second derivative of the equilibrium entropy

as a function of equilibrium thermodynamic quantities (for instance the angular momentum

at fixed energy) proportional to the negative inverse of the small eigenvalue.

It follows that a configuration that changes stability has divergent second derivatives

of entropy with respect to - say - angular momentum. Moreover the sign of this second

derivative is positive in the ‘more stable’ phase and negative in the ‘less stable’ phase.

Note that the turning point method gives information about the change in the number of

unstable directions about a solution, but does not yield information about the absolute

number of instabilities.11

The turning point method is useful because it yields information about stability prop-

erties, with respect to off shell fluctuations, of phases, using information only about on

shell variations. It is especially useful in the study of nonextensive systems like black

holes, for which negative specific heats do not necessarily imply dynamical instability

(note that we’re working with the microcanonical ensemble, unlike the grand-canonical

considerations of [18]). This method has been used to study the stability of black rings in

5 dimensions [13, 19]; it suggests that small black rings are always unstable, while large

black rings are more stable in that context. This result corroborates the explicit linear

fluctuation analysis about the flat space black rings [10].

11Moreover, this method only links vertical tangents - and not vertical asymptotes - in the graph of the

first derivative of entropy with respect to (say) angular momentum vs. angular momentum (a conjugacy

diagram) to instabilities, as vertical asymptotes occur at boundaries of equilibrium solution space instead

of separating solutions of differing degrees of stability.
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Figure 13: Conjugacy diagram: ψ as a function of angular momentum, L̃ for fixed energy, Ẽ = 40.

We now proceed to apply the turning point method to our plasmarings. Define

β =

(
∂S̃

∂Ẽ

)

eL

=
1

T̃
=

1

[g+(vo, ω̃)]1/4
, (5.6)

ψ =

(
∂S̃

∂L̃

)

eE

= − Ω̃

T̃
= − ω̃

[g+(vo, ω̃)]1/4
. (5.7)

In figure 13 we have plotted ψ against angular momentum at fixed energy for our ring

solutions. This graph has a single turning point, precisely at the point at which the large

ring turns into a small ring. The slope of the curve turns from positive (for the large ring)

to negative (for the small ring) in upon passing through the turning point, consistent with

our conjecture about the stability properties of plasmarings. More generally, figure 13 is

qualitatively similar to the equivalent graph of [13, figure6(b)] for black hole and black

rings in flat 5 dimensional space, except that the large black ring curves back down as we

increase L̃. This difference has no impact on stability analysis, as the turning point method

links instabilities to vertical tangents rather than horizontal tangents (even though a heat

capacity/susceptibility changes sign as one crosses a horizontal tangent).

In conclusion, the turning point method indicates that the small ring has an additional

instability as compared to the large ring. Note that it is perfectly possible that both the

large and the small ring are unstable, for example to fluctuations that break rotational

symmetry.

6. Four dimensional plasmarings

In the rest of this paper we turn to a consideration of localised plasma configurations

in certain massive 4 and 5 dimensional field theories obtained by compactifying related

5 and 6 dimensional CFTs on a Scherk-Schwarz circle. Although the field theories in

question are not gauge theories (e.g. the 5 dimensional massive theory could be obtained

by compactifying the (0,2) theory on the world volume of an M5 brane on a Scherk-Schwarz

circle) they undergo first order ‘deconfining’ transitions and the high temperature phase

of these theories admits a fluid dynamical description. The fluid configurations we will

construct are dual to localised black holes and black rings in Scherk-Schwarz compactified

AdS6 and AdS7 respectively.
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In this section we study stationary solutions of fluid dynamics in 3+1 dimensional field

theories. Our study will be less thorough than our 3 dimensional analysis above; we find

solutions analogous to those in 3 dimensions, but we postpone the complete parameteri-

sation and study of the thermodynamic properties of these solutions to future work. In

appendix A we have derived the equations relevant to stationary fluid flow in 5 dimensions,

but we leave the study of their solutions (and their higher dimensional counterparts) to

future work.

6.1 Stress tensor and equations of motion

In this section we set up the equations of motion of our fluid. We proceed in direct imitation

of our analysis of d = 3 above. We use the metric

ds2 = −dt2 + dr2 + r2dφ2 + dz2 . (6.1)

This gives the same non-zero Christoffel symbols as before (3.2). We choose the origin so

that r = 0 is the axis of rotation and there is a reflection symmetry in the plane z = 0.

For our configurations, uµ = γ(1, 0, ω, 0) with γ =
(
1 − ω2r2

)−1/2
. We assume that

the surface can be described by f(r, z) = z−h(r). In the interior of the fluid,This leads to

the stress tensor

T µν
perfect =




γ2(ρ+ ω2r2P ) 0 γ2ω(ρ+ P ) 0

0 P 0 0

γ2ω(ρ+ P ) 0 γ2

r2 (ω2r2ρ+ P ) 0

0 0 0 P


 (6.2)

and the surface stress tensor

T µν
surface =

σδ(z − h(r))√
1 + h′(r)2




1 + h′(r)2 0 0 0

0 −1 0 −h′(r)
0 0 −1+h′(r)2

r2 0

0 −h′(r) 0 −h′(r)2


 (6.3)

Just as in d = 3, the only potentially nonzero term in T µν
dissipative is proportional to

d
dr

[
T
γ

]
. As in d = 3, it will turn out that this quantity vanishes on our solutions, so we

simply proceed setting T µν
dissipative to zero.

The equations of motion, ∇µT
µν = 0, reduce to

0 =
∂P

∂r
− ω2r

1 − ω2r2
(ρ+ P ) ∓ 2σHh′(r) δ(z − h(r)) ,

0 =
∂P

∂z
± 2σH δ(z − h(r)) ,

(6.4)

where the upper sign refers to the upper (z > 0) surface and

H = ∓rh
′′ + h′(1 + h′2)

2r(1 + h′2)3/2
(6.5)

is the mean curvature of the surface [20].
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6.2 Solutions

Our analysis so far has been rather general; to proceed further we use the equations of

state (2.10). We define dimensionless variables as before

ω̃ =
σω

ρ0
, v = ωr , h̃(v) = ωh(r) . (6.6)

Using the equation of state (2.10), we can rewrite (6.4) in the bulkinterior of the fluid

as

1

ρ− ρ0

dρ

dv
=

5v

1 − v2
,

=⇒ (ρ(v) − ρ0)
(
1 − v2

)5/2
= 4Kρ0 ,

(6.7)

where K is an integration constant. This means that the pressure and temperature are

P = ρ0

(
K

(1 − v2)5/2
− 1

)
, T = γ

(
Kρ0

α

)1/5

, (6.8)

(notice that this justifies our neglect of heat flow).

Integrating (6.4) across an outer surface gives

P = 2σH or
K

(1 − v2)5/2
− 1 = −ω̃ vh̃

′′ + h̃′(1 + h̃′2)

v(1 + h̃′2)3/2
. (6.9)

This can be integrated once to give

vh̃′√
1 + h̃′2

= − K

3ω̃(1 − v2)3/2
+
v2

2ω̃
+
C

ω̃
, (6.10)

where C is another integration constant.

If we introduce a parameter l equal to the distance along the surface, measured from

(v, h̃) = (vo, 0), we have dl
dv = −

√
1 + h̃′2. Then (6.10) can be written as

dh̃

dl
=

2K − 3(v2 + 2C)(1 − v2)3/2

6ω̃v(1 − v2)3/2
,

dv

dl
= −

√
36ω̃2v2(1 − v2)3 −

[
2K − 3(v2 + 2C)(1 − v2)3/2

]2

6ω̃v(1 − v2)3/2
,

dh̃

dv
= − 2K − 3(v2 + 2C)(1 − v2)3/2

√
36ω̃2v2(1 − v2)3 −

[
2K − 3(v2 + 2C)(1 − v2)3/2

]2 .

(6.11)

It follows that the outer surface of our plasma configuration is given by

h̃(v) =

∫ v

vo

dx


− 2K − 3(x2 + 2C)(1 − x2)3/2

√
36ω̃2x2(1 − x2)3 −

[
2K − 3(x2 + 2C)(1 − x2)3/2

]2


 (6.12)
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Of course this only makes sense provided

6ω̃x(1 − x2)3/2 ≥
∣∣∣2K − 3(x2 + 2C)(1 − x2)3/2

∣∣∣ ∀ x ∈ (v, v0). (6.13)

Note also the conditions ρ > ρ0 =⇒ K > 0 and, of course, 0 < vi < vo.

Inner boundaries to the plasma configuration (if they exist) obey the equation P =

−2σH. The equivalent of (6.11), with a new integration constant D replacing C (the

integration constant K is a property of the plasma, not the surfaces), is

dh̃

dl
= −2K − 3(v2 + 2D)(1 − v2)3/2

6ω̃v(1 − v2)3/2
,

dv

dl
= −

√
36ω̃2v2(1 − v2)3 −

[
2K − 3(v2 + 2D)(1 − v2)3/2

]2

6ω̃v(1 − v2)3/2
,

dh̃

dv
=

2K − 3(v2 + 2D)(1 − v2)3/2

√
36ω̃2v2(1 − v2)3 −

[
2K − 3(v2 + 2D)(1 − v2)3/2

]2 .

(6.14)

The profiles of such boundaries may be obtained by integrating the equation above.

Even before doing any analysis, we will find it useful to give names to several easily

visualised, topologically distinct fluid configurations.

Ordinary ball: v′(l) = h̃(l) = 0 at v = vo. h̃
′(l) > 0 for 0 < v < vo. h̃

′(l) = 0 at v = 0.

Pinched ball: v′(l) = h̃(l) = 0 at v = vo. h̃
′(l) > 0 for 0 < v < vm. h̃′(l) = 0 at v = vm.

h̃′(l) < 0 for 0 < v < vm. h̃′(l) = 0 at v = 0.12

Ring: v′(l) = h̃(l) = 0 at v = vo. h̃
′(l) > 0 for vm < v < vo. h̃

′(l) = 0 at v = vm. h̃′(l) < 0

for vi < v < vm. v′(l) = h̃(l) = 0 at v = vi, where vi < vm < vo.

Examples of these surfaces can be seen in figures 16- 17. Each of these solutions could have

lumps of fluid eaten out of them. We will use the terms

Hollow ball: A ball (pinched or ordinary) with a ball cut out from its inside.

Hollow ring: A ring with a ring cut out from its inside.

Toroidally hollowed ball: A ball with a ring cut out from its inside.

It is easy to work out the horizon topology of the gravitational solutions dual to the

plasma topologies listed above. [22] have obtained a restriction on the topologies of horizons

of stationary black holes in any theory of gravity that obeys the dominant energy condition;

any product of spheres obeys the conditions from their analysis. Although the dominant

energy condition is violated in AdS space, in table 2, we have listed all 4 dimensional

horizons that are topologically products of lower dimensional spheres, and note that all

but one of these configurations is obtained from the dual to plasma objects named above

(B3 is a ball, B2 is a disc and B1 is an interval). The last one, T 4 = S1 × S1 × S1 × S1, is

a marginal case of the theorem.

In the rest of this section we will determine all stationary, rigidly spinning solutions of

the equations of fluid dynamics described above.

12Black holes with wavy horizons in six dimensions and above were predicted in [21].
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Horizon topology Plasma topology Object

S4 B3 Ball

S3 × S1 B2 × S1 Ring

S2 × S2 B1 × S2 Hollow ball

S2 × S1 × S1 B1 × S1 × S1 Hollow ring

S1 × S1 × S1 × S1 None None

Table 2: Topologies of gravity and plasma solutions

6.2.1 Ordinary ball

We search for solutions of (6.12) for which h̃′(v) vanishes at v = 0 and blows up at the

outermost point of the surface v0; we also require that h̃ decrease monotonically from 0 to

vo. The first condition sets K = 3C. The condition that v′(l) is zero at vo may be used to

determine ω̃ as a function of vo and K from the linear equation

2K − (3v2
o + 2K)(1 − v2

o)
3/2 = 6ω̃vo(1 − v2

o)
3/2 , (6.15)

(the choice of positive square root comes from the fact that the l.h.s. above is positive).

Note that the numerator of the formula for h̃′(v) be written as

2
[
1 − (1 − v2)3/2

](
K − 3v2(1 − v2)3/2

2
[
1 − (1 − v2)3/2

]
)

and 2
(
1 − (1 − v2)3/2

)
≥ 3v2(1−v2)3/2. Thus, K > 1 guarantees our monotonicity require-

ment. From (6.8), we see that this also ensures that the pressure is positive throughout

the ball.

In summary, the full set of ordinary ball solution is obtained by substituting C = K/3

and ω = ω(K, vo) (obtained by solving (6.15)) into (6.12). This procedure gives us a ball

solution for any choice of K > 1 and vo > 0.

In figures 16, 17 we present a plot of the profile h̃(v) for the ball solution at vo = 0.8,

K = 1.5.

6.2.2 Pinched ball

The pinched ball satisfies all the conditions of the ordinary ball except for the monotonicity

requirement on h̃(v); in fact the function h̃(v) is required to first increase and then decrease

as v runs from 0 to vo. It follows that C and ω̃ for these solutions are determined as in the

previous subsubsection (C = K/3 and ω from (6.15)) however the requirement h̃′′(v) > 0

at v = 0 forces K < 1. This ensures that h̃′(v) > 0 at small v and h̃′(v) < 0 at larger v. It

also ensures that the solution has negative pressure at the origin and positive pressure at

the outermost radius.

Not every choice of (K, vo) ∈ [0, 1], however, yields an acceptable pinched ball solution.

As we decrease vo from 1, at fixed K, it turns out that h̃(0) decreases, and in fact vanishes

at a critical value of vo. Solutions at smaller vo are unphysical. The physical domain,in
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Figure 14: Domain of ball solutions.

(K, vo) space is given by the inequality

∆h̃ ≡ −
∫ vo

0

dh̃

dv
dv =

∫ vo

0

2K − (3v2 + 2K)(1 − v2)3/2

√
36ω̃2v2(1 − v2)3 −

[
2K − (3v2 + 2K)(1 − v2)3/2

]2 dv ≥ 0 .

(6.16)

We should also ensure that (6.13) is not violated, i.e.

Q(vo,K) ≡ inf
v∈(0,vo)

{
36ω̃2v2(1 − v2)3 −

[
2K − (3v2 + 2K)(1 − v2)3/2

]2}
≥ 0 . (6.17)

The boundary of the domain permitted by (6.16) is plotted in figure 14. We have also

plotted the boundary of the region where (6.17) is violated. We see that (6.16) is the

stricter constraint, and that (6.17) is not violated for ordinary balls either. The full set of

pinched ball solutions is parameterised by values of vo and K in the region indicated in

figure 14.

In figures 16, 17 we present an example of the profile h̃(v) for the pinched ball solution

at parameters vo = 0.8, K = 0.55.

6.2.3 Ring

The plasma of the ring configuration excludes the region v < vi; as this region omits v = 0,

K and C are not constrained as before.

As v′(l) vanishes at vi, vo we have the following constraints

2K − 3(v2
i + 2C)(1 − v2

i )
3/2 = −6ω̃vi(1 − v2

i )
3/2 ,

2K − 3(v2
o + 2C)(1 − v2

o)
3/2 = 6ω̃vo(1 − v2

o)
3/2 .

(6.18)

the choice of negative/positive square roots comes from the requirements that h̃′(l) < 0

at v = vi and h̃′(l) > 0 at v = vo. These equations may be used to solve for C and ω̃

as a function of K, vi, vo. K(vo, vi) may then be determined from the requirement that

h̃(vi) = h̃(vo) = 0, i.e.

∫ vo

vi

dh̃

dv
dv = −

∫ vo

vi

2K − 3(v2 + 2C)(1 − v2)3/2

√
36ω̃2v2(1 − v2)3 −

[
2K − 3(v2 + 2C)(1 − v2)3/2

]2 dv = 0 . (6.19)
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Figure 15: K as a function of vi and vo for ring solutions.

In practice, it is easier to first eliminate K and C using (6.18), then substitute vi = ω̃r̃i,

vo = ω̃ro and use (6.19) to solve for ω̃ at fixed r̃i and r̃o. after this, one can determine K, vi
and vo from ω̃, r̃i and r̃o. We present a 3 dimensional plot of K as a function of vi and vo for

1 < r̃o < 10, 0.1 < r̃i/r̃o < 0.9 in figure 15. All of these solutions have K > 0, as required.

Unfortunately, with this method, one cannot see if there is a physically acceptable solution

for the whole range of 0 < vi < vo < 1. It appears that there is a solution for every value

of r̃i < r̃o.

In figures 16, 17 we plot the profile function h̃(v) for the ring solution at parameters

r̃i = 10, r̃o = 20.

6.2.4 Hollow ball

In this subsection we will demonstrate the non-existence of rigidly rotating hollow ball

solutions to the equations of fluid dynamics. Let us suppose such a solution did exist. The

inner surface must have vanishing gradient at v = 0; this sets D = K/3. Now let the

outermost point of the eaten out region be v = ṽo. The inner surface must have a vertical

tangent at ṽo. This also implies that the outer surface also has a vertical tangent at ṽo (the

condition for a vertical tangent is identical for an outer or inner surface). However, such

points saturate the inequality (6.13) and, as discussed in subsubsection 6.2.2, this never

happens in the interior of a ball. It follows that hollow ball solutions do not exist.

6.2.5 Hollow ring and toroidally hollowed ball

Let us first consider the possibility of the existence of a toridally hollowed ball solution. Let

the innermost and outermost part of the hollowed out region occur at v = ṽi and v = ṽo
respectively. Let us define a(v) = 6ω̃v(1 − v2)3/2 and b(v) = −2K + 3(v2 + 2D)(1 − v2)3/2

where D is the integration constant for the hollow. From (6.14) it must be that

a(ṽo) = b(ṽo) a(ṽi) = −b(ṽi) |b(v)| < |a(v)| ∀v ∈ (ṽi, ṽo)

For these conditions to apply, b(v) must start out negative at v = ṽi, increase, turn positive,

and cut the a(v) curve from below at v = ṽo. We have performed a rough numerical scan
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Figure 16: Profile of the surface of an ordinary ball, pinched ball and ring.

of allowed values of parameters (K, ω̃,D); it appears that this behaviour never occurs

(although we do not, however, have a rigourous proof for this claim). For all physically

acceptable values of parameters, the curve b(v) appears to either stay entirely below a(v)

or to cut it from above.13

These considerations, which could presumably be converted into a proof with enough

effort, lead us to believe that the existence of hollow balls is highly unlikely. We believe that

similar reasoning is likely to rule out the existence of hollow rings, although this is more

difficult to explicitly verify, as our understanding of the parameter ranges for acceptable

ring solutions is incomplete.

In order to understand intuitively why hollow rings and toroidally hollow balls are

unlikely, note that the pressure at the inner and outermost parts of the hollowed out

region is given by

P (ṽi) = ρ0ω̃

(
−|v′′v=ṽi

| + 1

ṽi

)
, P (ṽo) = ρ0ω̃

(
−|v′′v=ṽo

| − 1

ṽo

)
,

where v′′v=ṽi
is positive and v′′v=ṽo

is negative. Provided that |v′′v=ṽi
| and |v′′v=ṽo

| are not

drastically different, we would require P (ṽi) > P (ṽo). However, the pressure increases

monotonically with radius.

In conclusion, we strongly suspect, but have not yet fully proved, that the full set

of rigidly rotating solutions to the equations of fluid dynamics in d = 4 is exhausted by

ordinary balls, pinched balls and rings.

7. Discussion

In this paper we have emphasised that the AdS/CFT correspondence implies a duality

between nonsingular classical gravitational solutions with horizons, and solutions to the

boundary equations of fluid dynamics. This connection has previously been utilised by

several authors to obtain gravitational predictions for various fluid viscosities and conduc-

tivities (see, for instance, [3] and references therein). The new element in our work is the

incorporation of boundaries separating the fluid from the vacuum into the Navier-Stokes

13We emphasise that this behaviour appears to be true only for eω > eωmin(K) where eωmin(K) is the

smallest allowed value of eω at fixed K (see figure 14). It is easy to arrange for b(v) to cut a(v) from below

when eω is taken to be arbitrarily small at fixed K and D, but this is unphysical.
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Figure 17: 3D plot of the surface of an ordinary ball, pinched ball and ring.

equations. This feature (which relies on the explicit gravitational construction of the do-

main wall in [2]) allowed us to study stationary finite energy lumps of plasma, which are

dual to localised black holes and black rings in the bulk.

All our work (and easily imagined generalisations) apply to confining field theories.

Stationary black holes in such backgrounds sit at the IR ends of the geometry; the boundary

shadow of such black holes is a lump of deconfined fluid of size R + O(Λ−1
gap). The fluid

dynamic equations accurately describe such lumps only when R ≫ Λ−1
gap, in the same

limit the fluid yields an approximately local representation of the horizon. Consequently,

the AdS/CFT correspondence provides an approximately local fluid description of horizon

dynamics in the long wavelength limit. This result is strongly reminiscent of the Membrane

paradigm of black hole physics [23, 24, 5], and may constitute the precise version of this

idea in the context of asymptotically AdS spaces.

All the specific results of this paper are based on the equations of state (2.10), which

are valid for the high temperature phase of Scherk-Schwarz compactified conformal field

theories (dual to gravity in Scherk-Schwarz compactified AdS space). However the only

qualitative feature of this equation of state that was important for the existence of the

solutions of this paper is that the fluid pressure vanishes at finite energy density. In

figure 9 we have plotted the maximum and minimum values of ln T /Tc in our solutions,

as a function of energy and angular momentum. Note that at large values of charges (and

away from extremality bounds) each of these quantities tends to zero. This demonstrates

that over large classes of our solutions, the fluid temperature is always close to the phase

transition temperature. As a consequence such solutions ‘sample’ only the fluid equation

of state only in the neighbourhood around the zero pressure point, and so would exist in

any fluid whose pressure vanishes at finite energy density.

Our results suggest several directions for future research. It would be interesting to

analyse the stability of small fluctuations about the solutions presented in this paper. As

we have mentioned in subsection 5.5, we expect the small ring to be unstable to axisym-

metric fluid fluctuations, while we expect the ball and the large ring to be stable to such

fluctuations. However, it is quite possible that such an analysis would reveal that the

large ring solutions of this paper have a Plateau-Rayleigh type instability that maps to
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Gregory-Laflamme instabilities (see also [4])14 of the dual bulk solutions.

Although we have not mentioned this in the text, there exists a scaling limit in which

the thin plasmarings solutions simplify greatly.15 In this limit (ω̃ → 0 with vi fixed), the

3D plasmaring reduces to a straight strip of moving fluid. The fluid pressure vanishes on

this strip, and the fluid velocity is constant across the strip (more precisely vo = vi +
1−v2

i

2v2
i

ω̃ + O(ω̃2) so that r̃o − r̃i =
1−v2

i

2v2
i

+ O(ω̃)). Similarly, there should exist scaling limit

under which the 4 dimensional plasmaring reduces to an infinite stationary cylinder, with

fluid flow along the axis. Various dynamical properties of large rings (e.g. the potential

Gregory-Laflamme type instability alluded to in the previous paragraph) will probably

prove easiest to study in this scaling limit.

It should also be relatively straightforward, and rather interesting, to more fully anal-

yse the thermodynamics of the four dimensional solutions presented in this paper. This

thermodynamics may have interesting features; for example, it has been suggested that

ultra-spinning black holes in six dimensional flat space are unstable [21] and it would be

interesting to see if the same is true of our (pinched?) plasmaballs.

An extension of our work to obtain the moduli space of five and higher dimensional fluid

configurations - and so seven and higher dimensional gravitational black solutions should

also be possible (though analytic solutions may be harder to obtain in higher dimensions).

Such an extension would yield interesting information about horizon topologies in higher

dimensional gravitational theories. An obvious conjecture based on intuition from fluid

flows would be that the full set of stationary fluid solutions in five dimensions appear in

three distinct topological classes; solutions whose bulk dual topologies would be S5, S4×S1

and S3 × S1 × S1. The reason one might expect the last solution is that in five (but no

lower) dimensions, it is possible to have solutions that rotate about two independent axes;

these two rotations should be able to create their own distinct centrifugal ‘holes’, resulting

in the above topology. It would be very interesting to check whether this conjecture is

borne out.
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A. Five dimensional plasmarings

In the bulk of this paper we have presented an analysis of stationary fluid configurations

of the three and four dimensional fluid flows. The analysis of analogous configurations in

one higher dimension has an interesting new element. The rotation group in four spatial

14We thank T. Wiseman for suggesting this.
15We thank T. Wiseman again for pointing this out to us.
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dimensions, SO(4), has rank 2. Consequently a rotating lump of fluid in five dimensions

will be characterised by three rather than two conserved charges (two angular momenta

plus energy). When one of the two angular momenta is set to zero, it seems likely that

the set of stationary solutions will be similar to those of the four dimensional fluid; in this

limit we expect ball and ring configurations whose dual bulk horizon topologies are S5

and S4 × S1 respectively. However turning on the second angular momentum on the ring

solution could centrifugally repel the fluid away from the second rotational axis, leading to

a fluid configuration with dual bulk horizon topology S1 × S1 × S3. Such configurations

have not yet been discovered in gravity, and it would be exciting to either construct them

in fluid mechanics, or to rule out their existence.

In this appendix we set up and partially solve the equations of stationary fluid flow in

five dimensions. While the stationary equations of fluid dynamics are trivial to solve in the

bulk in every dimension, boundary conditions are harder to impose in higher dimensions.

In the particular case of 5 dimensions, the imposition of these boundary conditions requires

the solution of a 2nd order ordinary differential equation, that we have not (yet?) been able

to solve. It may be that a full study of this case would require careful numerical analysis,

which we leave to future work. In the rest of this appendix we simply set up the relevant

equations, and comment on the dual bulk interpretations of various possible solutions.

Consider a fluid propagating in flat five dimensional space

ds2 = −dt2 + dr21 + r21dφ
2
1 + dr22 + r22dφ

2
2 .

Consider a fluid flow with velocities given by uµ = γ(1, 0, ω1, 0, ω2), where γ = (1 − v2
1 −

v2
2)

−1/2, v1 = ω1r1 and v2 = ω2r2. Let the fluid surface be given by f(r1, r2) = r2−h(r1) =

0.

The stress tensor evaluated on such a fluid configuration is given by

T µν
perfect =




γ2(ρ+ (v2
1 + v2

2)P ) 0 γ2ω1(ρ+ P ) 0 γ2ω2(ρ+ P )

0 P 0 0 0

γ2ω1(ρ+ P ) 0 γ2

r2
1

(v2
1ρ+ (1 − v2

2)P ) 0 γ2ω1ω2(ρ+ P )

0 0 0 P 0

γ2ω2(ρ+ P ) 0 γ2ω1ω2(ρ+ P ) 0 γ2

r2
2

(v2
2ρ+ (1 − v2

1)P )




T µν
dissipative = −κγ2




0 ∂r1
0 ∂r2

0

∂r1
0 ω1∂r1

0 ω2∂r1

0 ω1∂r1
0 ω1∂r2

0

∂r2
0 ω1∂r2

0 ω2∂r2

0 ω2∂r1
0 ω2∂r2

0




T
γ

T µν
surface =

σδ(r2 − h(r1))√
1 + h′2




1 + h′2 0 0 0 0

0 −1 0 −h′ 0

0 0 −1+h′2

r2
1

0 0

0 −h′ 0 −h′2 0

0 0 0 0 −1+h′2

r2
2



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Figure 18: Topologies of five dimensional solutions.

As usual, we will temporarily ignore T µν
dissipative, justifying this when we find that T ∝ γ.

The nontrivial equations of motion that follow from (2.1) take the form

0 = ∇µT
µr1 = ∂r1

P − γ2ω2
1r1(ρ+ P ) − σGh′(r1)δ(r2 − h(r1))

0 = ∇µT
µr2 = ∂r2

P − γ2ω2
2r2(ρ+ P ) + σGδ(r2 − h(r1))

(A.1)

where

G = −r1hh
′′ + (1 + h′2)(hh′ − r1)

r1h(1 + h′2)3/2

Using the equation of state (2.10), the equations of motion in the fluid interior

∂ρ

∂v1
= 3(ρ− ρ0)

2v1
1 − v2

1 − v2
2

∂ρ

∂v2
= 3(ρ− ρ0)

2v2
1 − v2

1 − v2
2

are easily solved and we find

(ρ− ρ0)(1 − v2
1 − v2

2)
3 = 5Kρ0 P = ρ0

(
K

(1 − v2
1 − v2

2)
3
− 1

)
T = γ

[
Kρ0

α

]1/6

.

Integrating the equations of motion (A.1) across the surface we obtain the condition (the

upper sign should be used for upper surfaces)

K

(1 − ω2
1r

2
1 − ω2

2h
2)3

− 1 = ∓ σ

ρ0

r1hh
′′ + (1 + h′2)(hh′ − r1)

r1h(1 + h′2)3/2
(A.2)

Unfortunately we have not yet been able to solve this equation; we postpone further

analysis of (A.2) to future work. In the rest of this appendix we qualitatively describe

possible types of solutions to these equations, and their bulk dual horizon topologies.

In figure 18, we have sketched some possible topologies for these solutions. The first

touches both the r1 = 0 and r2 = 0 axes and we refer to this as a ball. The second type

only touches one of these axes and we refer to this as a ring. The third type touches neither

of the axes, as the plasma has the topology of a solid three-torus we refer to this as a torus.

Each of these could be pinched near either axis, and there could be hollow versions

(though the considerations of section 6 make it seem unlikely that hollow configurations

will actually be solutions).
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The horizon topology of the dual black object can be found by fibering three circles

over the shapes in figure 18. One of these circles degenerates at each axis (the angular

coordinates φ1 and φ2), and the other degenerates on the fluid surface (the Scherk-Schwarz

circle). The topologies generated are:

Horizon topology Plasma topology Object

S5 B4 Ball

S4 × S1 B3 × S1 Ring

S3 × S1 × S1 B2 × S1 × S1 Torus

S3 × S2 B1 × S3 Hollow ball

S2 × S2 × S1 B1 × S2 × S1 Hollow ring

S2 × S1 × S1 × S1 B1 × S1 × S1 × S1 Hollow Torus

S1 × S1 × S1 × S1 × S1 None None

Table 3: Potential 5 d fluid configurations and corresponding 7 d black holes.

B. Notation

We work in the (− + +) signature. µ, ν denote space-time indices.

Symbol Definition Symbol Definition

F Plasma free energy f Free energy density

E Plasma energy ρ Proper density

S Plasma entropy s Proper entropy density

T Plasma temperature P Pressure

ρ0 Plasma vacuum energy Tc Deconfinement temperature

α see (2.8) ρc Deconfinement density

Tµν Stress tensor uµ dxµ

dτ
= γ(1, ~v)

σ Surface tension γ
`
1 − v2

´−1/2

f(x) Surface at f(x) = 0 ω Angular velocity

fµ ∂µf/
√
∂f ·∂f v ωr

θ, σµν , aµ, Pµν see (2.3) ζ, η Bulk, shear viscosity

qµ Heat flux κ Thermal conductivity

eω σω/ρ0 r̃ ρ0r/σ

ro Outer radius vo ωro
ri Inner radius vi ωri
r̃o vo/eω g±(v) Boundary conditions (3.19)

r̃i vi/eω
E Ball/ring energy S Ball/ring entropy

L Angular momentum T Ball/ring temperature

Ω Ball/ring angular velocity ∆u Validity criterion (5.4)
eE, eL, eS, eT , eΩ See (4.4) β (∂ eS/∂ eE)eL

O,A,B,C Existence regions, see figure 5 ψ (∂ eS/∂eL) eE

Ô, Â, B̂, Ĉ Existence regions, see figure 7 x, y Boundary scalings in subsection 5.4

h Surface height z = h(r) h̃ eωh
H Mean curvature K,C,D Integration constants in section 6

∆h̃, Q Consistency conditions (6.16), (6.17) G Curvature in section A

Table 4: Notation
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